Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

catena-Poly[[(di-2-pyridylamine- $\left.\kappa^{2} N, N^{\prime}\right)$ copper(II)]-μ-benzene-1,4-dicarboxylato- $\left.\kappa^{4} O, O^{\prime}: O^{\prime \prime}, O^{\prime \prime \prime}\right]$

E Yang,* Yi Zheng and Gu-Yong Chen

College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, People's Republic of China

Correspondence e-mail:
yangeli66@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.046$
$w R$ factor $=0.118$
Data-to-parameter ratio $=15.3$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]In the title complex, $\left[\mathrm{Cu}\left(\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{O}_{4}\right)\left(\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{~N}_{3}\right)\right]_{n}$, the benzene-1,4-dicarboxylate dianions bridge the $\mathrm{Cu}^{\mathrm{II}}$ atoms to form polymeric complex chains. The $\mathrm{Cu}^{\text {II }}$ atom has a distorted octahedral coordination geometry. The centroid-to-centroid separation of 3.932 (2) \AA indicates $\pi-\pi$ stacking between nearly parallel pyridine rings.

Comment

Metal complexes with both benzene-1,4-dicarboxylate (tpht) and $2,2^{\prime}$-bipyridylamine (bipya) ligands have been reported recently, namely $[\mathrm{Cu}($ tpht $)($ bipya $)] \cdot \mathrm{H}_{2} \mathrm{O}$ (Karanović et al., $2002)$ and $\left[M(\right.$ tpht $)($ bipya $\left.)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}(M=\mathrm{Co}$ or Ni$)$ (Rogan et al., 2000). Here, we report the structure of the title $\mathrm{Cu}^{\mathrm{II}}$ complex, (I), with these ligands.

(I)

A segment of the polymeric molecular structure of (I) is shown in Fig. 1. The $\mathrm{Cu}^{\text {II }}$ atom is coordinated by two tpht ligands and one bipya ligand in a distorted octahedral geometry (Table 1). The tpht dianions bridge the $\mathrm{Cu}^{\mathrm{II}}$ atoms to form zigzag chains in the crystal structure, similar to a previously reported structure (Karanović et al., 2002).
The centroid-to-centroid separation of 3.932 (2) A between nearly parallel $\mathrm{N} 1-$ and $\mathrm{N} 2{ }^{\mathrm{ii}}$-containing pyridine rings [dihedral angle $7.92(6)^{\circ}$] indicates the existence of weak $\pi-\pi$ stacking between bipya ligands [symmetry code: (ii) $1-x,-y$, $1-z]$.

Experimental

A mixture of $\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.186 \mathrm{~g}, 0.5 \mathrm{mmol})$, benzene-1,4dicarboxylic acid $(0.083 \mathrm{~g}, 0.5 \mathrm{mmol}), 2,2^{\prime}$-bipyridylamine $(0.085 \mathrm{~g}$, $0.5 \mathrm{mmol}), \mathrm{Na}_{2} \mathrm{CO}_{3}(0.055 \mathrm{~g}, 0.5 \mathrm{mmol})$ and water $(10 \mathrm{ml})$ was sealed in a 15 ml Teflon-lined stainless steel reactor and heated at 423 K for 60 h , to yield single crystals of (I).

Figure 1

Part of the structure of (I), with 30% probability displacement ellipsoids (arbitrary spheres for H atoms). [Symmetry code: (i) $1+x, \frac{1}{2}-y, \frac{1}{2}+z$.]

Crystal data

$\left[\mathrm{Cu}\left(\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{O}_{4}\right)\left(\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{~N}_{3}\right)\right]$	$Z=4$
$M_{r}=398.86$	$D_{x}=1.686 \mathrm{Mg} \mathrm{m}^{-3}$
Monoclinic, $P 2_{1} / c$	Mo $K \alpha$ radiation
$a=7.6403(6) \AA$	$\mu=1.42 \mathrm{~mm}^{-1}$
$b=21.103(2) \AA$	$T=293(2) \mathrm{K}$
$c=9.8015(8) \AA$	Prism, blue
$\beta=96.066(4)^{\circ}$	$0.20 \times 0.15 \times 0.15 \mathrm{~mm}$
$V=1571.5(2) \AA^{3}$	

Data collection

Siemens SMART CCD area-	12092 measured reflections
detector diffractometer	3592 independent reflections
φ and ω scans	3069 reflections with $I>2 \sigma(I)$
Absorption correction: multi-scan	$R_{\text {int }}=0.035$
$(S A D A B S ;$ Sheldrick, 1996)	$\theta_{\max }=27.5^{\circ}$
$T_{\min }=0.743, T_{\max }=0.810$	

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.046$
$w R\left(F^{2}\right)=0.118$
$S=1.09$
3592 reflections
235 parameters
H -atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0517 P)^{2}\right. \\
& +2.0459 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.004 \\
& \Delta \rho_{\text {max }}=0.40 \mathrm{e}_{\AA^{-3}} \\
& \Delta \rho_{\text {min }}=-0.56 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected bond lengths (\AA).

$\mathrm{Cu} 1-\mathrm{N} 1$	$2.022(2)$	$\mathrm{Cu} 1-\mathrm{O} 2$	$2.168(2)$
$\mathrm{Cu} 1-\mathrm{N} 2$	$2.047(3)$	$\mathrm{Cu} 1-\mathrm{O} 3^{\mathrm{i}}$	$2.056(2)$
$\mathrm{Cu} 1-\mathrm{O} 1$	$2.106(2)$	$\mathrm{Cu} 1-\mathrm{O} 4^{\mathrm{i}}$	$2.171(2)$

Symmetry code: (i) $x+1,-y+\frac{1}{2}, z+\frac{1}{2}$.

All H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}=0.93$ and $\mathrm{N}-\mathrm{H}=0.86 \AA$, and refined in riding mode, with $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

References

Bruker (1997). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Karanović, L., Poleti, D., Rogan, J., Bogdanović, G. \& Spasojević-de Biré, A. (2002). Acta Cryst. C58, m275-m279.

Rogan, J., Poleti, D., Karanović, L., Bogdanović, G., Spasojević-de Biré, A. \& Petrović, D. M. (2000). Polyhedron, 19, 1415-1421.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

[^0]: © 2006 International Union of Crystallography All rights reserved

